pymgrid.envs.ContinuousMicrogridEnv#

class pymgrid.envs.ContinuousMicrogridEnv(modules, add_unbalanced_module=True, loss_load_cost=10, overgeneration_cost=2, reward_shaping_func=None, trajectory_func=None, flat_spaces=True, observation_keys=(), step_callback=None, reset_callback=None)[source]#

Methods

close()

Override close in your subclass to perform any necessary cleanup.

compute_net_load([normalized])

Compute the net load at the current step.

convert_action(action[, to_microgrid, normalize])

Convert a reinforcement learning action to a microgrid control.

deserialize(mapping)

dump([stream])

Save a microgrid to a YAML buffer.

flatten_obs(observation_space, obs)

from_microgrid(microgrid, **kwargs)

Construct an RL environment from a microgrid.

from_nonmodular(nonmodular, **kwargs)

Convert to Microgrid from old-style NonModularMicrogrid.

from_normalized(data_dict[, act, obs])

De-normalize an action or observation.

from_scenario([microgrid_number])

Load one of the pymgrid25 benchmark microgrids.

get_cost_info()

get_empty_action([sample_flex_modules])

Get an action for the microgrid with no values set.

get_forecast_horizon()

Get the forecast horizon of timeseries modules contained in the microgrid.

get_log([as_frame, drop_singleton_key, ...])

Collect a log of controls and responses of the microgrid.

load(stream)

Load a microgrid from a yaml buffer.

potential_observation_keys()

reset()

Reset the microgrid and flush the log.

run(control[, normalized])

sample_action([strict_bound, ...])

Get a random action within the microgrid's action space.

set_forecaster(forecaster[, ...])

Set the forecaster for timeseries modules in the microgrid.

set_module_attrs([attr_dict])

Set the value of an attribute in all modules containing that attribute.

state_dict([normalized, as_run_output, _initial])

State of the microgrid as a dict.

state_series([normalized])

State of the microgrid as a pandas Series.

step(action[, normalized])

Run one timestep of the environment's dynamics.

to_nonmodular()

Convert Microgrid to old-style NonModularMicrogrid.

to_normalized(data_dict[, act, obs])

Normalize an action or observation.

verbose_eq(other[, indent])

Attributes

action_space

Space object corresponding to valid actions.

check_actions

controllable

Container of all controllable modules in the microgrid.

current_step

Current step of underlying modules.

final_step

Final step of underlying timeseries data.

fixed

Container of all fixed modules in the microgrid.

flat_spaces

Whether the environment's spaces are flat.

flex

Container of all flex modules in the microgrid.

initial_step

Initial step at which to start underlying timeseries data.

log

Microgrid's log as a DataFrame.

module_list

List of all modules in the microgrid.

modules

View of the module container.

n_modules

Number of modules in the microgrid.

np_random

Returns the environment's internal _np_random that if not set will initialise with a random seed.

observation_space

Space object corresponding to valid observations.

yaml_tag

Tag used for yaml serialization.