pymgrid.envs.ContinuousMicrogridEnv#
- class pymgrid.envs.ContinuousMicrogridEnv(modules, add_unbalanced_module=True, loss_load_cost=10, overgeneration_cost=2, reward_shaping_func=None, trajectory_func=None, flat_spaces=True, observation_keys=(), step_callback=None, reset_callback=None)[source]#
Methods
close()Override close in your subclass to perform any necessary cleanup.
compute_net_load([normalized])Compute the net load at the current step.
convert_action(action[, to_microgrid, normalize])Convert a reinforcement learning action to a microgrid control.
deserialize(mapping)dump([stream])Save a microgrid to a YAML buffer.
flatten_obs(observation_space, obs)from_microgrid(microgrid, **kwargs)Construct an RL environment from a microgrid.
from_nonmodular(nonmodular, **kwargs)Convert to Microgrid from old-style NonModularMicrogrid.
from_normalized(data_dict[, act, obs])De-normalize an action or observation.
from_scenario([microgrid_number])Load one of the pymgrid25 benchmark microgrids.
get_empty_action([sample_flex_modules])Get an action for the microgrid with no values set.
Get the forecast horizon of timeseries modules contained in the microgrid.
get_log([as_frame, drop_singleton_key, ...])Collect a log of controls and responses of the microgrid.
load(stream)Load a microgrid from a yaml buffer.
reset()Reset the microgrid and flush the log.
run(control[, normalized])sample_action([strict_bound, ...])Get a random action within the microgrid's action space.
set_forecaster(forecaster[, ...])Set the forecaster for timeseries modules in the microgrid.
set_module_attrs([attr_dict])Set the value of an attribute in all modules containing that attribute.
state_dict([normalized, as_run_output, _initial])State of the microgrid as a dict.
state_series([normalized])State of the microgrid as a pandas Series.
step(action[, normalized])Run one timestep of the environment's dynamics.
Convert Microgrid to old-style NonModularMicrogrid.
to_normalized(data_dict[, act, obs])Normalize an action or observation.
verbose_eq(other[, indent])Attributes
Space object corresponding to valid actions.
Container of all controllable modules in the microgrid.
Current step of underlying modules.
Final step of underlying timeseries data.
Container of all fixed modules in the microgrid.
Whether the environment's spaces are flat.
Container of all flex modules in the microgrid.
Initial step at which to start underlying timeseries data.
Microgrid's log as a DataFrame.
List of all modules in the microgrid.
View of the module container.
Number of modules in the microgrid.
Returns the environment's internal
_np_randomthat if not set will initialise with a random seed.Space object corresponding to valid observations.
Tag used for yaml serialization.